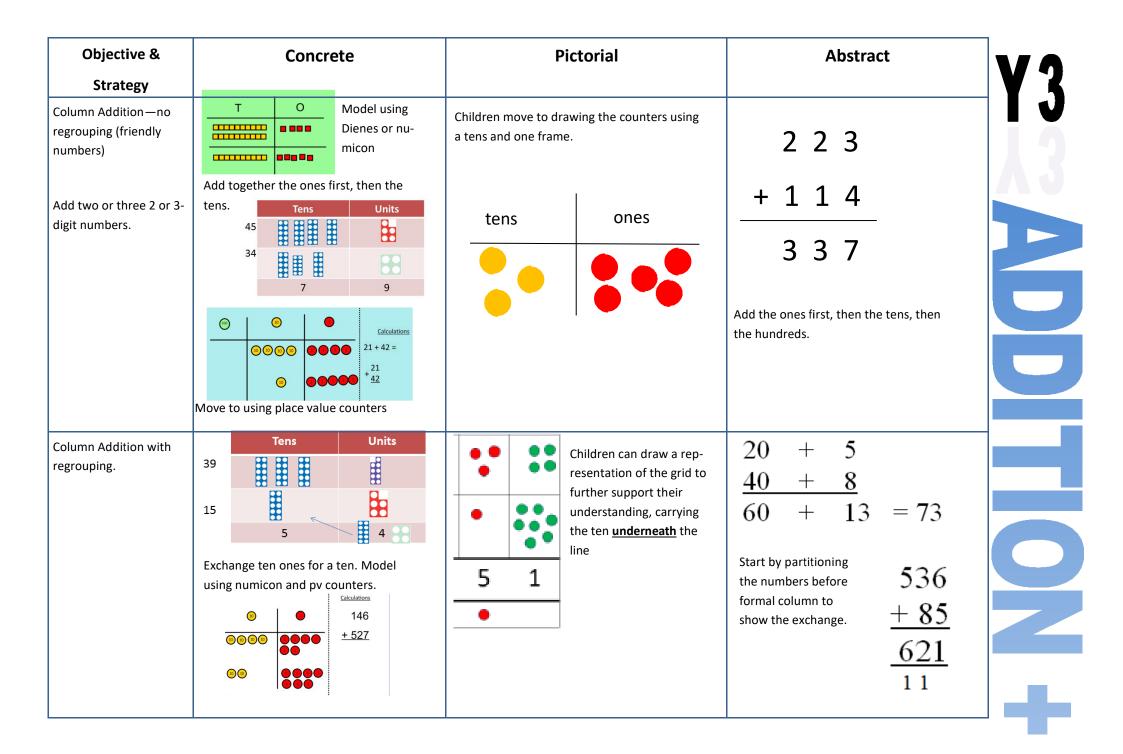
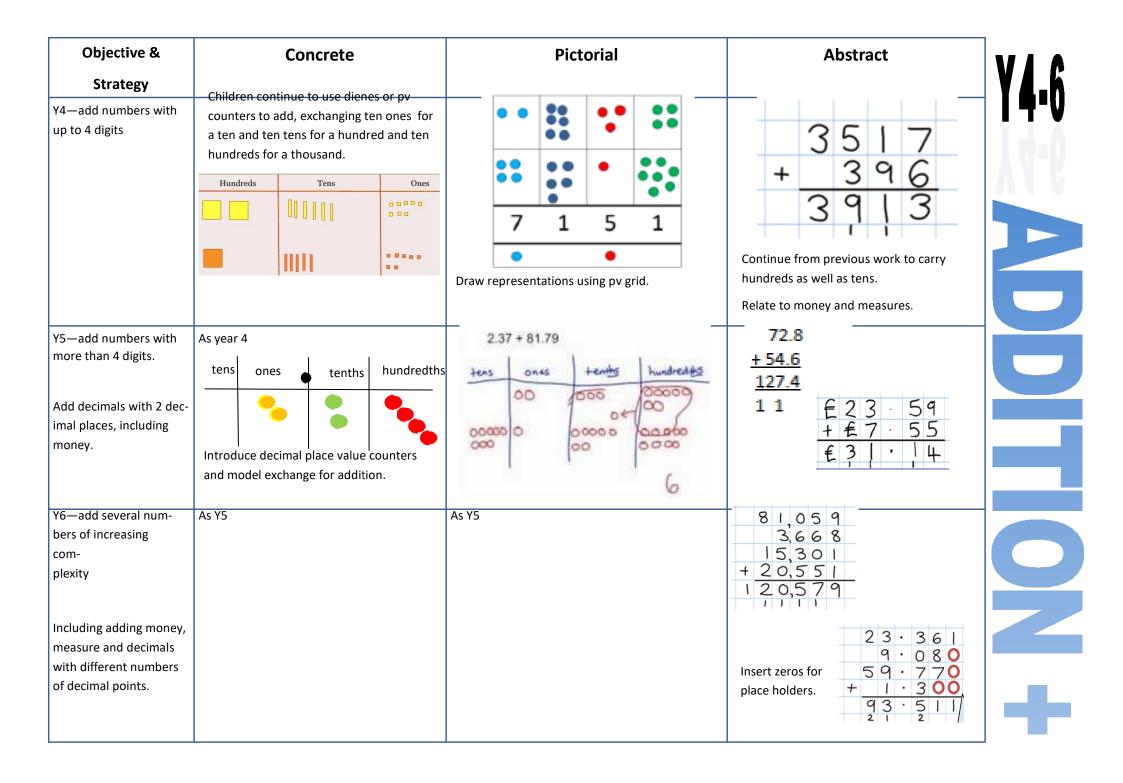


Mathematics Calculation Policy

Adapted from White Rose.


Mathematics at The Willows


Mathematics is a creative and highly inter-connected discipline essential to everyday life. A high-quality mathematics education provides a foundation for understanding the world, the ability to reason mathematically, an appreciation of the beauty and power of mathematics, and a sense of enjoyment and curiosity about the subject' - National Curriculum, 2014

Objective & Strategy	Concrete	Pictorial	Abstract	
Combining two parts to make a whole: part- whole model	Use part part whole model. Use cubes to add two num-bers together as a group or in a bar.	3 3 5 2 7 5 9 5 9 5 1 Use pictures to add two numbers together as a group or in a bar.	4 + 3 = 7 5 3 $10 = 6 + 4$ Use the part-part whole diagram as shown above to move into the abstract.	
Starting at the big- ger number and counting on	Start with the larger number on the bead string and then count on to the smaller num- ber 1 by 1 to find the answer.	12 + 5 = 17 10 11 12 13 14 15 16 17 18 19 20 Start at the larger number on the number line and count on in ones or in one jump to find the answer.	5 + 12 = 17 Place the larger number in your head and count on the smaller number to find your answer.	
Regrouping to make 10. This is an essential skill for column addition later.	6+5=11 Start with the bigger number and use the smaller number to make 10. Use ten frames.	Use pictures or a number line. Regroup or partition the smaller number using the part part whole model to make 10. 9 + 5 = 14	7 + 4= 11 If I am at seven, how many more do I need to make 10. How many more do I add on now?	
Represent & use number bonds and related subtraction facts within 20	2 more than 5.	$\begin{array}{c} \hline \\ \hline $	Emphasis should be on the language '1 more than 5 is equal to 6.' '2 more than 5 is 7.' '8 is 3 more than 5.'	

Objective &	Concrete	Pictorial	Abstract
Strategy			
Adding multiples of	50= 30 = 20		20 + 30 = 50
ten	11111		70 = 50 + 20
		3 tens + 5 tens = tens 30 + 50 =	40 + 🗆 = 60
	Model using dienes and bead strings	Use representations for base ten.	
Use known number facts	Children ex- plore ways of	20	+ 1 = 16 16 - 1 =
Part part whole	making num-		1 + = 16 16 - = 1
	bers within 20	+ = 20 20 - =	
	A.	+ = 20 20 - =	
Using known facts	ᄕᇆᆠᄔᇆᅟᅟᄔᇿᄔᇿ	$(1 + \frac{1}{2}) = \frac{1}{2}$	3 + 4 = 7
		+ =	leads to
			30 + 40 = 70
	LLL LLL LLLLL		leads to
		Children draw representations of H,T and O	300 + 400 = 700
Bar model		***	23 25
		333333 333	23 23
	3 + 4 = 7		f
	5 /	7 + 3 = 10	23 + 25 = 48

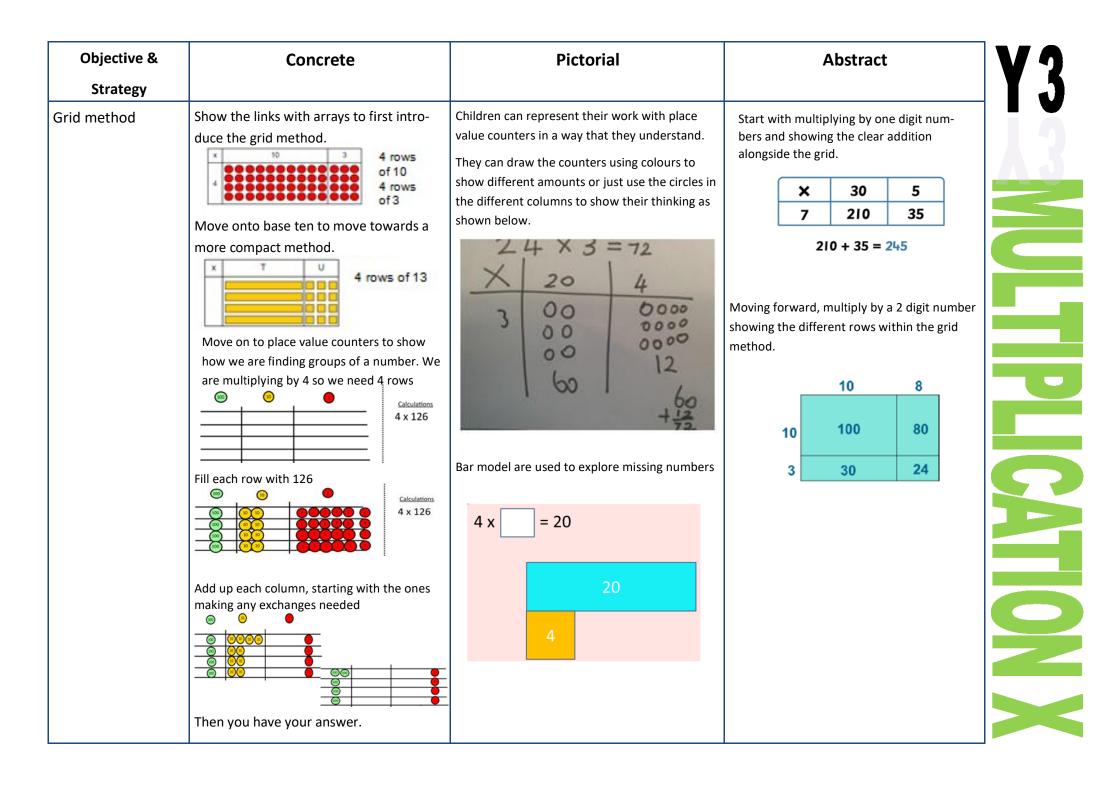
Objective &	Concrete	Pictorial	Abstract	
Strategy				
Add a two digit number and ones	17 + 5 = 22 Use ten frame to make 'magic ten Children explore the pattern. 17 + 5 = 22 27 + 5 = 32	Use part part whole and number line to model. 17 + 5 = 22 $(3 \ 2 \ 16 + 7 \ +4 \ +3 \ 20 \ 16 \ 20 \ 23$	17 + 5 = 22 Explore related facts $17 + 5 = 22$ $5 + 17 = 22$ $22 - 17 = 5$ $17 - 5$ $22 - 5 = 17$	
Add a 2 digit num- ber and tens	25 + 10 = 35 Explore that the ones digit does not change	$ \begin{array}{r} 27 + 30 \\ +10 +10 +10 \\ \hline 27 37 47 57 \end{array} $	27 + 10 = 37 27 + 20 = 47 $27 + \Box = 57$	
Add two 2-digit numbers	Model using dienes , place value counters and numicon	+20 +5 Or +20 +3 +2 47 67 72 47 67 70 $72Use number line and bridge ten using partwhole if necessary.$	25 + 47 $20 + 5$ $40 + 7$ $20 + 40 = 60$ $5 + 7 = 12$ $60 + 12 = 72$	
Add three 1-digit numbers	Combine to make 10 first if possible, or bridge 10 then add third digit	Regroup and draw representation. + $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	4 + 7 + 6 = 10 + 7 $= 17$ Combine the two numbers that make/bridge ten then add on the third.	

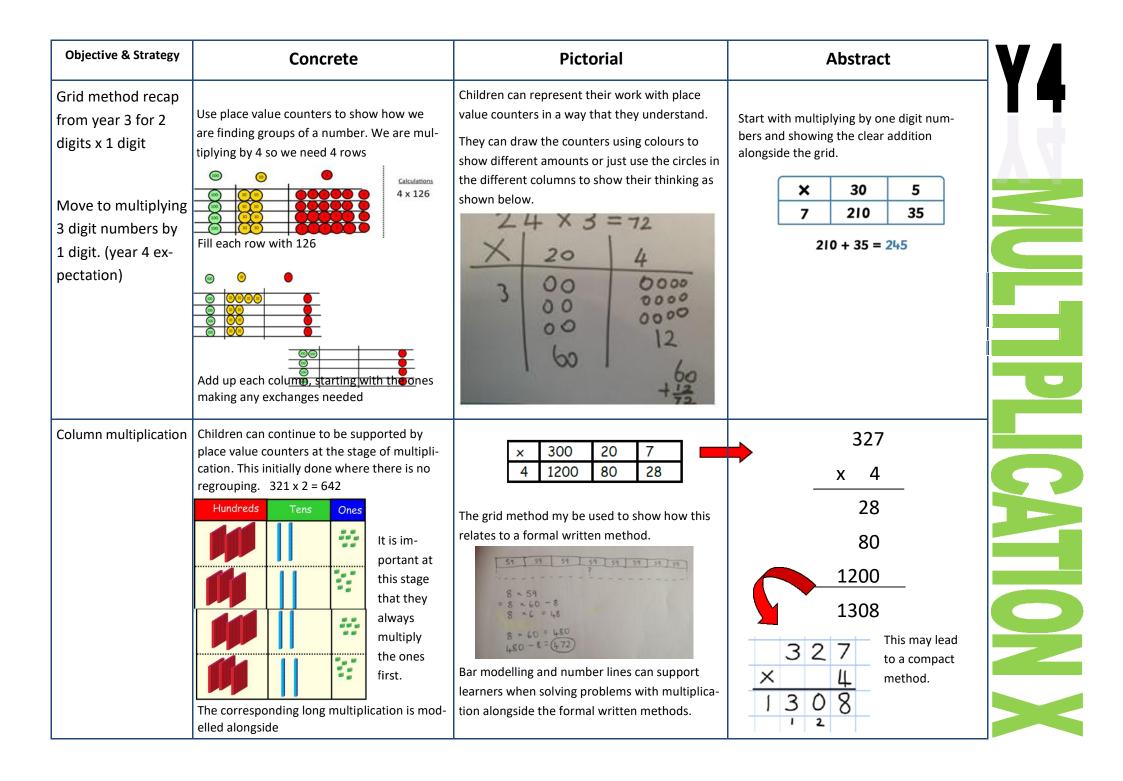
Objective & Strategy	Concrete	Pictorial	Abstract	V 4
Taking away ones.	Use physical objects, counters, cubes etc to show how objects can be taken away. 6-4=2 4-2=2	$\begin{array}{c} & & & & & & \\ & & & & & & \\ & & & & & $	7—4 = 3 16—9 = 7	
Counting back	Move objects away from the group, counting backwards. Move the beads along the bead string as you count backwards.	$\begin{array}{c c} -1 & -1 & -1 & 5 & -3 & = 2 \\ \hline & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ \hline \end{array}$ Count back in ones using a number line.	Put 13 in your head, count back 4. What number are you at?	
Find the Difference	Compare objects and amounts T 'Seven is 3 more than four' 'I am 2 years older than my sister' 5 Pencils T are 2 years older than my sister' 5 Pencils 5 Pencils 5 Pencils 5 Pe	Count on using a number line to find the difference. $*^{6}$ $+^{6}$ 0 1 2 3 4 5 6 7 8 9 10 11 12	Hannah has12 sweets and her sister has 5. How many more does Hannah have than her sister.?	CTION -

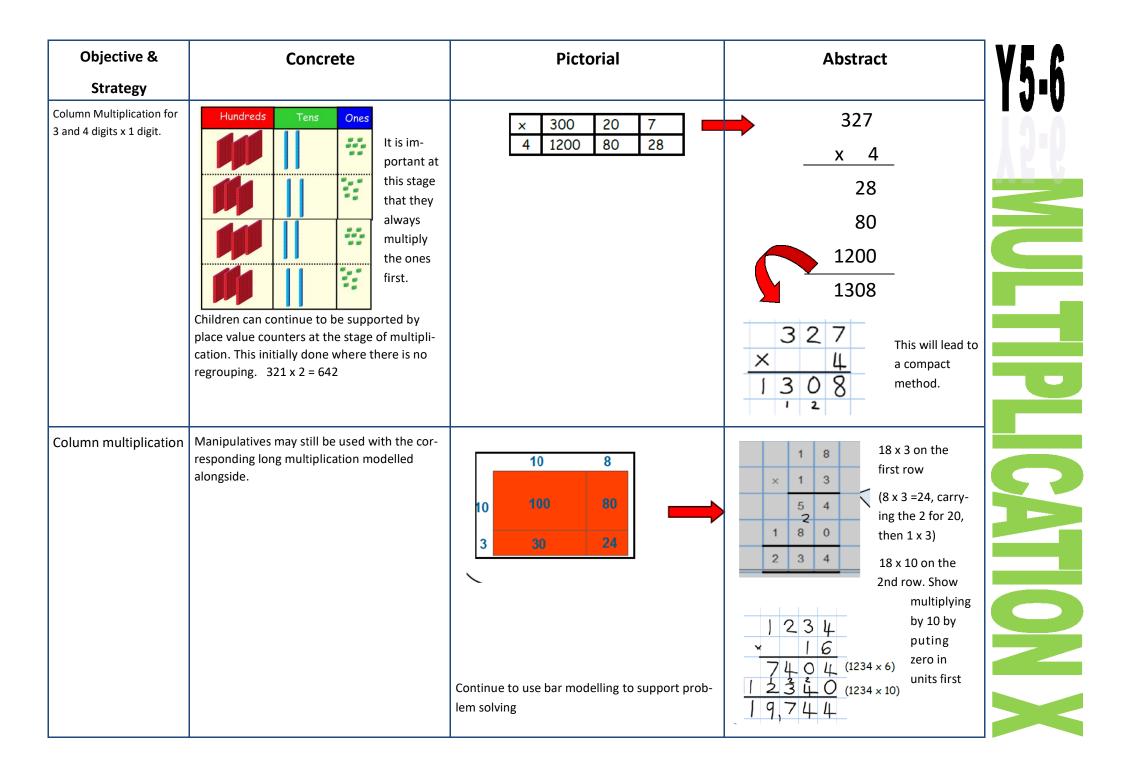
Objective & Strategy	Concrete	Pictorial	Abstract
Represent and use number bonds and related subtraction facts within 20 Part Part Whole model	Link to addition. Use PPW model to model the inverse. If 10 is the whole and 6 is one of the arts, what s the other part? 10-6 = 4	Use pictorial representations to show the part.	Move to using numbers within the part whole model.
Make 10	14—9	13-7 $3 - 7 = 6$ $3 - 3$ 3	16—8 How many do we take off first to get to 10? How many left to take off?
Bar model	5-2 = 3		8 2 10 = 8 + 2 10 = 2 + 8 10-2 = 8 10-8 = 2

Objective & Strategy	Concrete	Pictorial	Abstract
Regroup a ten into ten ones	Use a PV chart to show how to change a ten into ten ones, use the term 'take and make'	20 - 4 =	20—4 = 16
Partitioning to sub- tract without re- grouping. 'Friendly numbers'	34-13 = 21 Use Dienes to show how to par- tition the number when subtracting without regroup- ing.	Children draw representations of Dienes and cross off.	43—21 = 22
Make ten strategy Progression should be crossing one ten, crossing more than one ten, cross- ing the hundreds.	34-28 Use a bead bar or bead strings to model counting to next ten and the rest.	76 80 90 $93'counting on' to find 'difference'Use a number line to count on to next tenand then the rest.$	93—76 = 17

Objective &	Concrete	Pictorial	Abstract	
Strategy				V X
Column subtraction without regrouping (friendly numbers)	47—32	Calculations 54 -22 32	47 - 24 = 23 $-\frac{20 + 7}{20 + 3}$	
	Use base 10 or Numicon to model	Darw representations to support under- standing	Intermediate step may be needed to lead to clear subtraction under- standing.	2
Column subtraction with regrouping	Tens Units	45 -29 Tens Ones 16 HIL 200	$\begin{array}{r} 8 \ 36 \ -25 \ 4^{=} \ 582 \\ \hline 300 \ 130 \ 6 \\ - \ 200 \ 50 \ 4 \\ \hline 500 \ 80 \ 2 \end{array} \end{array} \qquad \begin{array}{r} \text{Begin by parti-tioning into pv} \\ \text{columns} \end{array}$	
	Begin with base 10 or Numicon. Move to pv counters, modelling the exchange of a ten into tten ones. Use the phrase 'take and make' for exchange.	$\begin{bmatrix} 2 & 2 & - & - & - & - & - & - & - & - &$	728-582=146 Then move to formal method. 47 12 8 5 8 2 1 4 6	R

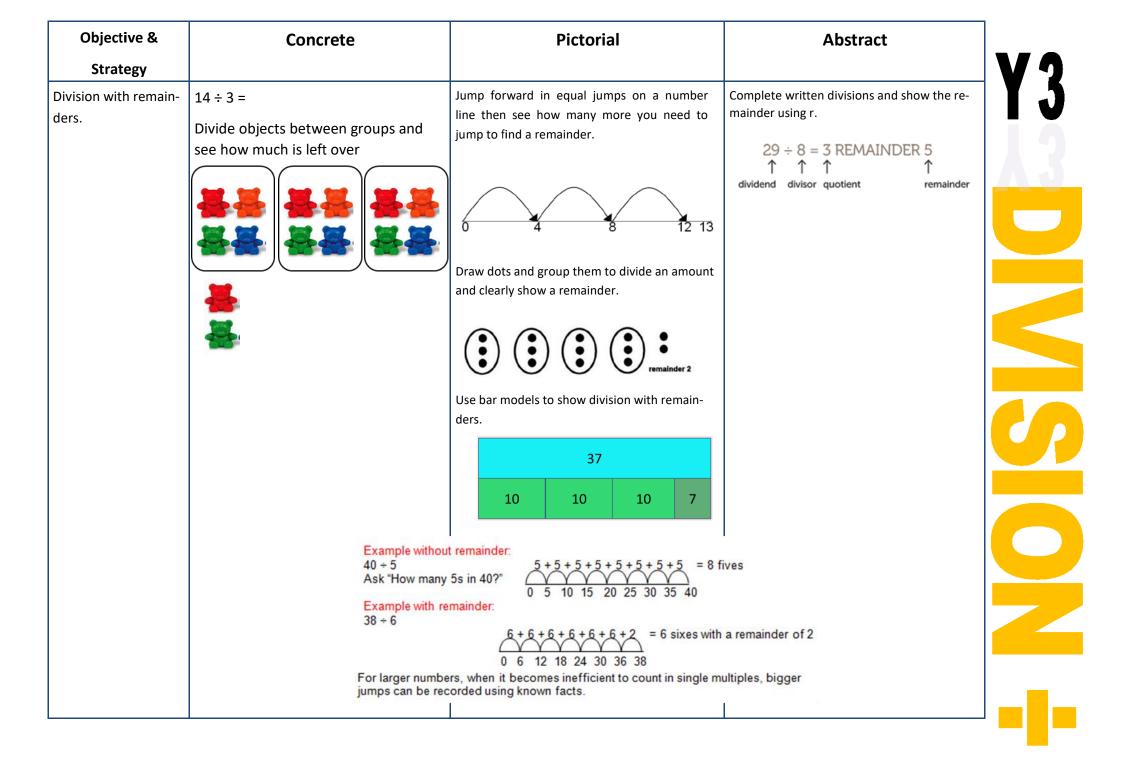

Objective & Strategy	Concrete		crete	Pictorial	Abstract	V A _ A
Subtracting tens and ones		234	- 179	Children to draw pv counters and show their exchange—see Y3		1 4' V
Year 4 subtract with up to 4 digits.	@ @@	00 00 00 00			-1562	XTX
Introduce decimal subtrac- tion through context of money		00000 00000 00			1192	S
			hange using Numi- en move to PV coun-		Use the phrase 'take and make' for ex- change	B
Year 5- Subtract with at least 4 dig- its, including money and measures.	As Year 4			Children to draw pv counters and show their exchange—see Y3	28,928	R
Subtract with decimal values, including mixtures of integers and decimals and aligning the decimal					Use $77 \times 67 \cdot 0$ zeros for $-372 \cdot 5$ holders. $6796 \cdot 5$	R
Year 6—Subtract with increasingly large and more complex numbers					%"\$\$\$\$,699 - 89,949 - 60,750	ГО
and decimal values.					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ž

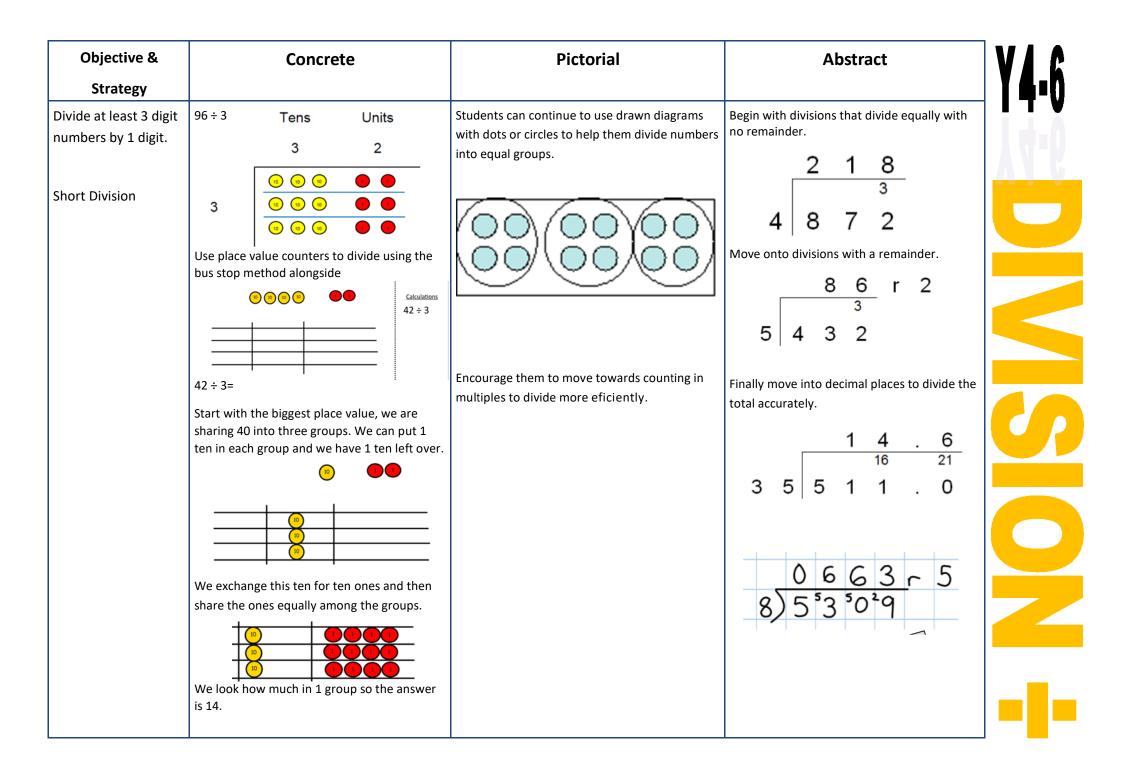

Objective & Strategy	Concrete	Pictorial	Abstract
Doubling	Use practical activities using manip- ultives including cubes and Numicon to demonstrate doubling $+ \square = \square$ $+ \square = \square$ $+ \square = \square$ $+ \square = \square$ $+ \square = \square$	Draw pictures to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10 10 10 12 12 = 32
Counting in multi- ples	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting.	Children make representations to show counting in multiples. $ \begin{array}{c} 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 & 2 &$	Count in multiples of a number aloud. Write sequences with multiples of num- bers. 2, 4, 6, 8, 10 5, 10, 15, 20, 25 , 30
Making equal groups and counting the total	Use manipulatives to create equal groups.	Draw to show 2 x 3 = 6 Draw and make representations	2 x 4 = 8


Objective &	Concrete	Pictorial	Abstract
Strategy			
Repeated addition	Use different objects to add equal groups	Use pictorial including number lines to solve prob There are 3 sweets in one bag. How many sweets are in 5 bags altogether? 3+3+3+3+3 = 15 • • • • • • • • •	Write addition sentences to describe objects and pictures. $\underbrace{\begin{array}{c} \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $
Understanding ar- rays	Use objects laid out in arrays to find the answers to 2 lots 5, 3 lots of 2 etc. Image: Contract of the state of the st	Draw representations of arrays to show under- standing	3 x 2 = 6 2 x 5 = 10

Objective &	Concrete	Pictorial	Abstract
Strategy			
Doubling	Model doubling using dienes and PV counters. 40 + 12 = 52	Draw pictures and representations to show how to double numbers	Partition a number and then double each part before recombining it back together. 16 10 10 10 10 10 10 10 10
Counting in multi- ples of 2, 3, 4, 5, 10 from 0 (repeated addition)	Count the groups as children are skip counting, children may use their fin- gers as they are skip counting. Use bar models. 5+5+5+5+5+5+5=40	Number lines, counting sticks and bar models should be used to show repre- sentation of counting in multiples. $\underbrace{3^{+3} + 3^{+3$	Count in multiples of a number aloud. Write sequences with multiples of numbers. 0, 2, 4, 6, 8, 10 0, 3, 6, 9, 12, 15 0, 5, 10, 15, 20, 25, 30 $4 \times 3 =$

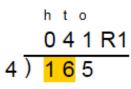
Objective &	Concrete	Pictorial	Abstract	V۹
Strategy				I Z
Multiplication is commutative	Create arrays using counters and cubes and Numicon.	Use representations of arrays to show different calculations and explore commutativity.	$12 = 3 \times 4$ $12 = 4 \times 3$ Use an array to write multiplication sentences and reinforce repeated addition. 00000 $5 + 5 + 5 = 15$ $3 + 3 + 3 + 3 + 3 = 15$ $5 \times 3 = 15$ $3 \times 5 = 15$	
Using the Inverse This should be taught alongside division, so pupils learn how they work alongside each other.		$\begin{vmatrix} 4 & 2 \\ 4 & 2 \\ \end{vmatrix} \times \end{vmatrix} = \end{vmatrix}$ $\begin{vmatrix} 4 & 2 \\ \end{vmatrix} \times \end{vmatrix} = \end{vmatrix}$ $\begin{vmatrix} 5 & 4 \\ 1 & 2 \\ \end{vmatrix} \times \end{vmatrix} = \end{vmatrix}$ $\begin{vmatrix} 5 & 4 \\ 1 & 2 \\ \end{vmatrix}$ $\begin{vmatrix} 4 & 2 \\ 2 \\ 1 & 2 \\ \end{vmatrix}$ $\begin{vmatrix} 4 & 2 \\ 2 \\ 1 & 2 \\ \end{vmatrix}$ $\begin{vmatrix} 5 & 4 \\ 1 & 2 \\ 1 & 2 \\ \end{vmatrix}$ $\begin{vmatrix} 6 & 4 \\ 1 & 2 \\$	$2 \times 4 = 8$ $4 \times 2 = 8$ $8 \div 2 = 4$ $8 \div 4 = 2$ $8 = 2 \times 4$ $8 = 4 \times 2$ $2 = 8 \div 4$ $4 = 8 \div 2$ Show all 8 related fact family sentences.	SATION X




Objective &	Concrete	Pictorial	Abstract		
Strategy					
Strategy Multiplying decimals up to 2 decimal plac- es by a single digit.			Remind children that the single digit belongs in the units column. Line up the decimal points in the question and the answer. $ \begin{array}{r} 3 & 1 & 9 \\ $		

Objective &	Concrete	Pictorial	Abstract
Strategy			
Division as sharing Use Gordon ITPs for	6,6,	Children use pictures or shapes to share quanti- ties.	12 shared between 3 is 4
modelling		S shared between 2 is 4	
		Sharing:	
		12 shared between 3 is 4	
	I have 10 cubes, can you share them equally in		
	2 groups?		

Objective &	Concrete	Pictorial	Abstract	V
Strategy				
Division as sharing	have 10 cubes, can you share them equally in 2 groups?	Children use pictures or shapes to share quanti- ties. 3 + 2 = 4 Children use bar modelling to show and support understanding.	12÷3=4	
		12 ÷ 4 = 3		
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.	Use number lines for grouping $ \begin{array}{r} +3 & +3 & +3 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ \hline 12 & + & 3 & = & 4 \\ \end{array} $ Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group. $ \begin{array}{r} 20 \\ \hline 20 \\ \hline \end{array} $	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?	
	••••• ••••• ••••• ••••• 0 5 10 15 20 25 30 35	20 ÷ 5 = ? 5 x ? = 20		


Objective &	Concrete	Pictorial	Abstract
Strategy Division as grouping	Use cubes, counters, objects or place value counters to aid understanding. 24 divided into groups of $6 = 4$	Continue to use bar modelling to aid solving division problems. 20 20 \div 5 = ? 5 x ? = 20	How many groups of 6 in 24? 24 ÷ 6 = 4
Division with arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Draw an array and use lines to split the array into groups to make multiplication and division sentences	Find the inverse of multiplication and division sentences by creating eight linking number sentences. 7 x 4 = 28 4 x 7 = 28 28 \div 7 = 4 28 \div 7 = 4 28 \div 4 = 7 28 = 7 x 4 28 = 4 x 7 4 = 28 \div 7 7 = 28 \div 4

Long Division

Step 1—a remainder in the ones

4 does not go into 1 (hundred). So combine the 1 hundred with the 6 tens (160).

4 goes into 16 four times.

```
4 goes into 5 once, leaving a remainder of 1.
```

```
th h t o
0 4 0 0 R7
8 ) 3 2 0 7
```

8 does not go into 3 of the thousands. So combine the 3 thousands with the 2 hundreds (3,200).

8 goes into 32 four times (3,200 ÷ 8 = 400) 8 goes into 0 zero times (tens). 8 goes into 7 zero times, and leaves a remainder of 7.

Objective & Strategy	Concrete	Pictorial	Abstract	
Recording remainder as a whole, decimal and fraction			$\frac{858}{2^{2}5^{1}7^{2}6}$	2
		8)6	8 1 2·1 4 9'7·0	25
3 5 : Identify a : Divide by : Divide the answer b	$\frac{86}{1^{2}5^{1}8} = \frac{31}{6 1^{1}86}$ Answer: $558 \div 18 = 31$ pair of factors fo one of the factor y the other factor.		Answer: $858 \frac{2}{3}$	18 = 3 x 6
	$ \begin{array}{c} 4 \\ \not {\ } \not {\ } \not {\ } 58 \\ - \underline{360} \\ 198 \\ - \underline{180} \\ 18 \\ - \underline{18} \\ 0 \\ \end{array} (10 \times 18) \\ 0 \\ \end{array} $	12 235	$\frac{12}{12} = 212$ $\frac{12}{44} = \frac{12 \times 1}{24 \times 2}$ $\frac{12}{48 \times 4}$ $\frac{12 \times 1}{48 \times 4}$ ese related = 96 \times 8	